(参数方程极坐标)已知定直线l:ρcosθ=a,a>0,O为极点,Q为l上的任意一点连接OQ,以OQ为一边作正三角形OQP.O,P,Q三点按顺时针方向排列,求当点Q在l上运动时点P的极坐标方程,并化成直角坐标方程.
网友回答
解:如图所示:设点P的坐标为(ρ,θ),则有题意可得点Q的坐标为(ρ,θ-),再由点Q的横坐标等于a,a>0,
可得,即当点Q在l上运动时点P的极坐标方程为 .
由?可得 +=a,
故当点Q在l上运动时点P的直角坐标方程为.
解析分析:设点P的坐标为(ρ,θ),则有题意可得点Q的坐标为(ρ,θ-),再由点Q的横坐标等于a,a>0,数形结合可得,再把它化为直角坐标方程.
点评:本题主要考查求简单曲线的极坐标方程,把极坐标方程化为直角坐标方程的方法,属于基础题.