同时具有下列性质:“①对任意x∈R,f(x+π)=f(x)恒成立;②图象关于直线对称;③函数在上是增函数的函数可以是A..B.C..D.
网友回答
D
解析分析:由题意设出函数的表达式,求出函数的周期,确定ω的值,利用对称性,结合在上是增函数确定选项即可.
解答:由选项可知函数的解析式设为y=sin(ωx+φ)或y=cos(ωx+φ);①对任意x∈R,f(x+π)=f(x)恒成立;周期为π,ω=2;排除A;②图象关于直线x=对称;所以B不正确,D、C正确;③函数在上是增函数所以D正确;f(x)=cos(2x+)是减函数,C不正确;故选:D.
点评:本题是考查三角函数的解析式的确定,通过函数的已知的性质确定表达式,考查计算能力,推理能力.解决本题用的是一一排除法,解决本题的关键在于熟练掌握三角函数的性质.