设m∈R,已知函数f(x)=-x2-2mx2+(1-2m)x+3m-2,若曲线y=f(x)在x=0处的切线恒过定点P,则点P的坐标为________.

发布时间:2020-07-31 13:30:44

设m∈R,已知函数f(x)=-x2-2mx2+(1-2m)x+3m-2,若曲线y=f(x)在x=0处的切线恒过定点P,则点P的坐标为________.

网友回答

(,-)
解析分析:欲求曲线y=f(x)在x=0处的切线恒过定点P,须先求出切线方程,须求出其斜率的值即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

解答:f(x)=-x3-2mx2+(1-2m)x+3m-2,f′(x)=-3x2-4mx+(1-2m).因为f(0)=3m-2,f′(0)=1-2m,所以曲线y=f(x)在x=0处的切线方程为y-(3m-2)=(1-2m)(x-0),即m(2x-3)+(y-x+2)=0.由于得故切线恒过定点P(,-)故
以上问题属网友观点,不代表本站立场,仅供参考!