如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形AnBnCnDn,则四边形AnBnCnDn的面积为A.-B.C.-D.不确定
网友回答
B
解析分析:根据三角形的面积公式,可以求得四边形ABCD的面积是16;根据三角形的中位线定理,得A1B1∥AC,A1B1=AC,则△BA1B1∽△BAC,得△BA1B1和△BAC的面积比是相似比的平方,即 ,因此四边形A1B1C1D1的面积是四边形ABCD的面积的 ,依此类推可得四边形AnBnCnDn的面积.
解答:∵四边形A1B1C1D1的四个顶点A1、B1、C1、D1分别为AB、BC、CD、DA的中点,∴A1B1∥AC,A1B1=AC,∴△BA1B1∽△BAC,∴△BA1B1和△BAC的面积比是相似比的平方,即 ,又四边形ABCD的对角线AC=8,BD=4,AC⊥BD,∴四边形ABCD的面积是16,∴SA1B1C1D1=×16,∴四边形AnBnCnDn的面积=16×=.故选B.
点评:此题综合运用了三角形的中位线定理、相似三角形的判定及性质.注意:对角线互相垂直的四边形的面积等于对角线乘积的一半.