已知抛物线x2=2py(p>0)上一点P的坐标为(x0,y0)及直线上一点,过点Q作抛物线的两条切线QA,QB(A,B为切点).(1)求过点P与抛物线相切的直线l的方

发布时间:2020-07-31 14:48:15

已知抛物线x2=2py(p>0)上一点P的坐标为(x0,y0)及直线上一点,过点Q作抛物线的两条切线QA,QB(A,B为切点).
(1)求过点P与抛物线相切的直线l的方程;
(2)求直线AB的方程.
(3)当点Q在直线上变化时,求证:直线AB过定点,并求定点坐标.

网友回答

解:(1)由x2=2py(p>0)得,故,故过点P与抛物线相切的直线l的方程为,
化简得,x0x-p(y+y0)=0(5分)
(2)设A(x1,y1),B(x2,y2),由(1)得,直线QA方程为x1x-p(y+y1)=0,
直线QB方程为x2x-p(y+y2)=0,又点为直线QA,QB的交点,

故点A,B都在直线上,
即直线AB的方程为(12分)
(3)由(2)知直线AB过定点,定点坐标坐标为(15分)
注:其他解法相应给分.
解析分析:(1)由x2=2py(p>0)得,故,由此能求出过点P与抛物线相切的直线l的方程.(2)设A(x1,y1),B(x2,y2),由直线QA方程为x1x-p(y+y1)=0,直线QB方程为x2x-p(y+y2)=0,又点为直线QA,QB的交点,能求出直线AB的方程.(3)由AB的方程知直线AB过定点,定点坐标坐标为.

点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.
以上问题属网友观点,不代表本站立场,仅供参考!