解答题已知函数
(1)求f(x)的最小正周期;
(2)求f(x)的最大值,以及此时x的取值集合;
(3)求f(x)的单调递增区间.
网友回答
解:(1)由f(x)的解析式为,可得它的最小正周期 T==4π.
(2)根据可得,当 cos(+)=1时,函数f(x)取得最大值为6,
此时,(+)=2kπ,k∈z,解得?x=4kπ-,k∈z.
故当f(x)取得最大值时,x的取值集合为{x|x=4kπ-,k∈z}.
(3)令 2kπ-π≤(+)≤2kπ,k∈z,可得 4kπ-≤x≤4kπ-,
故f(x)的单调递增区间为[4kπ-,4kπ-],k∈z.解析分析:(1)由f(x)的解析式根据函数y=Asin(ωx+?)的周期等于,求得它的最小正周期.(2)当 cos(+)=1时,函数f(x)取得最大值为6,此时,(+)=2kπ,k∈z,由此求得当f(x)取得最大值时,x的取值集合.(3)令 2kπ-π≤(+)≤2kπ,k∈z,求得x的范围,即可求得f(x)的单调递增区间.点评:本题主要考查复合三角函数的周期性及求法,复合三角函数的值域、单调性,属于中档题.