在平面直角坐标系xoy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是A.B.C.D.
网友回答
A
解析分析:化圆C的方程为(x-4)2+y2=1,求出圆心与半径,由题意,只需(x-4)2+y2=4与直线y=kx+2有公共点即可.
解答:∵圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x-4)2+y2=4与直线y=kx+2有公共点即可.设圆心C(4,0)到直线y=kx+2的距离为d,则d=≤2,即3k2≤-4k,∴-≤k≤0.∴k的最小值是.故选A.
点评:本题考查直线与圆的位置关系,将条件转化为“(x-4)2+y2=4与直线y=kx+2有公共点”是关键,考查学生灵活解决问题的能力,是中档题.