解答题如图四棱锥S-ABCD中,SD⊥AD,SD⊥CD,E是SC的中点,O是底面正方形

发布时间:2020-07-09 01:09:46

解答题如图四棱锥S-ABCD中,SD⊥AD,SD⊥CD,E是SC的中点,O是底面正方形ABCD的中心,AB=SD=6.
(1)求证:EO∥平面SAD;
(2)求直线EO与平面SCD所成的角.

网友回答

(1)证明:∵E是SC的中点,O是底面正方形ABCD的中心,
∴EO∥SA
∵EO?平面SAD,SA?平面SAD,
∴EO∥平面SAD;
(2)解:∵EO∥SA
∴直线EO与平面SCD所成的角等于直线SA与平面SCD所成的角
∵SD⊥AD,SD⊥CD,AD∩CD=D
∴SD⊥平面ABCD
∵AD?平面ABCD
∴SD⊥AD
∵AD⊥DC,SD∩DC=D
∴AD⊥平面SCD
∴∠ASD为直线SA与平面SCD所成的角
∵AB=SD
∴∠ASD=45°
∴直线EO与平面SCD所成的角等于45°.解析分析:(1)利用三角形中位线的性质,可得线线平行,从而可得线面平行;(2)根据EO∥SA,可得直线EO与平面SCD所成的角等于直线SA与平面SCD所成的角,证明AD⊥平面SCD,可得∠ASD为直线SA与平面SCD所成的角,从而可得结论.点评:本题考查线面平行,考查线面角,考查学生分析解决问题的能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!