填空题给出下列四个命题:
①“向量a,b的夹角为锐角”的充要条件是“a?b>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有;
③将4个不同的小球全部放入3个不同的盒子,使得每个盒子至少放入1个球,共有72种不同的放法;
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是________.(请写出所有真命题的序号)
网友回答
②解析分析:对于①:“向量a,b的夹角为锐角”的充要条件是“a?b>0,且cos<a,b>≠1;对于②:函数f(x)=lgx为上凸函数,故为真命题;对于③:将4个不同的小球全部放入3个不同的盒子,使得每个盒子至少放入1个球,共有C42A33=36种不同的放法,故为假命题;对于④:记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向右平移1个单位,即得到y=f-1[-(x-1)]=f-1(1-x)的图象,∴④为假命题.综上,只有②是真命题.解答:∵“向量a,b的夹角为锐角”的充要条件是“a?b>0,且cos<a,b>≠1”,∴①为假命题;∵函数f(x)=lgx为上凸函数,,∴对任意的x1、x2∈(0,+∞),且x1≠x2,都有,∴②为真命题;∵将4个不同的小球全部放入3个不同的盒子,使得每个盒子至少放入1个球,共有C42A33=36种不同的放法,∴③为假命题;∵记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向右平移1个单位,即得到y=f-1[-(x-1)]=f-1(1-x)的图象,故为假命题.点评:本题的考点是命题的真假判断与应用,主要考查命题真假判断,涉及向量知识、函数知识、排列组合知识及图象的变换,综合性强.