过抛物线y2=4x的焦点作倾斜角为45°的弦AB,O为坐标原点,则△OAB的面积为A.2B.4C.D.
网友回答
C
解析分析:设A(x1,y1),B(x2,y2),则S=|OF|?|y1-y2|.直线为x+y-1=0,即x=1-y代入y2=4x得:y2=4(1-y),由此能求出△OAB的面积.
解答:设A(x1,y1),B(x2,y2),则S=|OF|?|y1-y2|.直线为x+y-1=0,即x=1-y代入y2=4x得:y2=4(1-y),即y2+4y-4=0,∴y1+y2=-4,y1y2=-4,∴|y1-y2|===4 ,∴S=|OF|?|y1-y2|=×4 =2 .故选C.
点评:本题主要考查了抛物线的简单性质,直线与抛物线的位置关系.在涉及焦点弦的问题时常需要把直线与抛物线方程联立利用韦达定理设而不求,进而利用抛物线的定义求得问题的