如图,⊙B过平面直角系的原点O,交y轴于点A,交x轴于点C,∠ODC=60°,A(0,2),则弦OC的长为A.1B.C.2D.2

发布时间:2020-08-04 14:30:13

如图,⊙B过平面直角系的原点O,交y轴于点A,交x轴于点C,∠ODC=60°,A(0,2),则弦OC的长为A.1B.C.2D.2

网友回答

D
解析分析:过B作BM垂直于x轴,交x轴于点M,BN垂直于y轴,交y轴于点N,利用垂径定理得到M、N分别为OC、OA的中点,同时得到四边形BMON为矩形,根据矩形的对边相等可得出BM=ON,且都等于OA的一半,由A的坐标得到OA的长,进而确定出BM的长,由同弧所对的圆心角等于所对圆周角的2倍,求出∠OBC的度数,再由BO=BC,BM垂直于OC,利用三线合一得到BM为角平分线,得出∠OBM的度数,在直角三角形OBM中,利用锐角三角函数定义求出OM的长,由OC=2OM即可求出OC的长.

解答:过B作BM⊥x轴,BN⊥y轴,如图所示:∴M、N分别为OC、OA的中点,∴AN=ON,OM=CM,又∵A(0,2),∴OA=2,又∵四边形BMON为矩形,∴ON=BM=1,∵∠ODC=60°,∴∠OBC=120°,又∵BO=CO,BM⊥OC,∴∠OBM=60°,在Rt△OBM中,BM=1,则OM=BM?tan60°=,则OC=2OM=2.故选D

点评:此题考查了圆周角定理,垂径定理,坐标与图形性质,等腰三角形的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!