已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为A.B.1C.D.a
网友回答
B
解析分析:此题可通过证△EAC≌△OAB,得AE=OA,从而求出EA的长;△EAC和△OAB中,已知的条件只有AB=AC;由AB=BD,得=,可得∠AED=∠AOB;四边形ABDE内角于⊙O,则∠EAB+∠D=180°,即∠EAC=180°-60°-∠D=120°-∠D;而∠ECA=180°-∠ACB-∠BCD=120°-∠BCD,上述两个式子中,由BD=AB=BC,易证得∠D=∠BCD,则∠ECA=∠EAC,即△EAC、△OAB都是等腰三角形,而两个等腰三角形的顶角相等,且底边AC=AB,易证得两个三角形全等,由此得解.
解答:解:∵△ABC是等边三角形,∴AB=BC=AC=BD=a,∠CAB=∠ACB=60°;∵AB=BD,∴,∴∠AED=∠AOB;∵BC=AB=BD,∴∠D=∠BCD;∵四边形EABD内接于⊙O,∴∠EAB+∠D=180°,即∠EAC+60°+∠D=180°;又∵∠ECA+60°+∠BCD=180°,∴∠ECA=∠EAC,即△EAC是等腰三角形;在等腰△EAC和等腰△OAB中,∠AEC=∠AOB,∵AC=AB,∴△EAC≌△OAB;∴AE=OA=1.故选B.
点评:此题考查了圆心角、弧、弦的关系,等边三角形的性质,圆内接四边形的性质,全等三角形的判定和性质等知识,综合性强,难度较大;能够发现并证得△EAC≌△OAB是解答此题的关键.