已知:如图,AD平分∠BAC,M是BC的中点,MF∥AD交CA的延长线于F,求证:BE=CF.
网友回答
证明:延长EM到G,使MG=EM,连接GC,
∵MF∥AD,
∴∠2=∠F,∠4=∠3,
∵AD平分∠BAC,
∴∠2=∠4,
∵∠1=∠3,
∴∠1=∠F,
∵M是BC的中点,
∴BM=CM,
∵在△BEM和△CGM中,
,
∴△BEM≌△CGM(SAS),
∴BE=CG,∠1=∠G,
∵∠1=∠F,
∴∠F=∠G,
∴CG=CF,
∴BE=CF.
解析分析:延长EM到G,使MG=EM,连接GC,推出∠1=∠F,证△BEM≌△CGM,推出BE=CG,∠1=∠G=∠F,推出CF=CG,即可得出