如图,在正方形ABCD中,E是对角线BD上任意一点,过E作EF⊥BC于F,作EG⊥CD于G,若正方形ABCD的周长为m,则四边形EFCG的周长为________.
网友回答
m
解析分析:由ABCD为正方形,根据正方形的性质可知四条边相等,且∠CDB与∠CBD相等都为45°,进而得到三角形DEG与三角形BEF都是等腰直角三角形,即EG与DG相等,EF与BF相等,由根据三个角为直角的四边形为矩形得到EFCG为矩形,从而得到对边EG与FC相等,EF与GC相等,故把四边形EFCG的周长转换为正方形的两条边相加,即为正方形周长的一半,由正方形的周长为m即可求出四边形EFCG的周长.
解答:∵ABCD为正方形,∴∠DBC=∠BDC=45°,AB=BC=CD=AD,又∵EF⊥BC,EG⊥CD,∴∠EFC=∠EGC=90°,又∠C=90°,∴四边形EFCG为矩形,∴EG=FC,EF=GC,∵△BEF和△EDG都为等腰直角三角形,∴DG=EG,EF=BF,则四边形EFCG的周长=EF+FC+CG+EG=DG+GC+CF+FB=DC+BC=m.故