如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠

发布时间:2021-03-07 22:04:40

如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.答案是这个,证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△GHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.我想知道∵DH⊥

网友回答

中位线定理啊什么的 好多年了忘记了 DHB是直角三角形 O是中点 所以就相等啊
以上问题属网友观点,不代表本站立场,仅供参考!