如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为A.12B.7C.5D.13

发布时间:2020-07-30 04:15:51

如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为A.12B.7C.5D.13

网友回答

D

解析分析:先根据△BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据△ABD是等腰直角三角形可知AB=BD,在Rt△ABC中利用勾股定理即可求出AC的长.

解答:∵△BCE等腰直角三角形,BE=5,∴BC=5,∵CD=17,∴DB=CD-BE=17-5=12,∵△ABD是等腰直角三角形,∴AB=BD=12,在Rt△ABC中,∵AB=12,BC=5,∴AC===13.故选D.

点评:本题考查的是等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!