如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B为圆心,BD为半径的⊙B与⊙O的位置关系为A.相交B.外离C.外切D.内切
网友回答
B
解析分析:要判断两圆的位置关系,需要明确两圆的半径和两圆的圆心距,再根据数量关系进一步判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R-r<d<R+r;内切,则d=R-r;内含,则d<R-r.
解答:根据题意,得:圆O的直径是10,点B到点O的距离是5,则5>5+2,所以⊙B与⊙O的位置关系为外离.故选B.
点评:本题考查了由数量关系来判断两圆位置关系的方法.