正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴

发布时间:2020-07-29 23:59:23

正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知正方形A1B1C1O,正方形A2B2C2C1的面积分别是4和16,则Bn的坐标是________.

网友回答

(2n+1-2,2n)
解析分析:首先求得直线的解析式,分别求得B1,B2,B3…的坐标,可以得到一定的规律,据此即可求解.

解答:∵正方形A1B1C1O,正方形A2B2C2C1的面积分别是4和16,
∴A1的坐标是(0,2),A2的坐标是:(2,4),点B1的坐标为(2,2),
∵点A1,A2,A3,…在直线y=kx+b(k>0)上,
∴,
解得,,
∴直线的解析式是:y=x+2,
∵C2的横坐标是6,A2的纵坐标为4,
∴B2的坐标为(6,4),
∴在直线y=x+2中,令x=6,则A3纵坐标是:6+2=8,
∴B3的横坐标为2+4+8=14=24-2,纵坐标为8=23,
综上,Bn的横坐标是:2n+1-2,纵坐标是:2n.
以上问题属网友观点,不代表本站立场,仅供参考!