矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为A.5B.C.6D.
网友回答
B
解析分析:过E作EG⊥CD于G,利用矩形的判定可得,四边形AEGD是矩形,则AE=DG,EG=AD,于是可求MG=DG-DM=1,在Rt△EMG中,利用勾股定理可求EM.
解答:解:过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG,EG=AD,∴EG=AD=BC=7,MG=DG-DM=3-2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中,EM====5.故选B.
点评:本题考查了矩形的判定、勾股定理等知识,是基础知识要熟练掌握.