设函数f(x)=x2-2|x|-1?(-3≤x≤3),(1)证明f(x)是偶函数;(2)画出这个函数的图象;(3)指出函数f(x)的单调区间,并说明在各个单调区间上f

发布时间:2020-08-04 18:31:18

设函数f(x)=x2-2|x|-1?(-3≤x≤3),
(1)证明f(x)是偶函数;
(2)画出这个函数的图象;
(3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(4)求函数的值域.

网友回答

解::(1)证明∵x∈[-3,3],
∴f(x)的定义域关于原点对称.
f(-x)=(-x)2-2|-x|-1
=x2-2|x|-1=f(x),
即f(-x)=f(x),
∴f(x)是偶函数.

(2)当x≥0时,f(x)=x2-2x-1=(x-1)2-2,
当x<0时,f(x)=x2+2x-1=(x+1)2-2,
即f(x)=
根据二次函数的作图方法,可得函数图象如图.

(3)函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3].
f(x)在区间[-3,-1)和[0,1)上为减函数,在[-1,0),[1,3]上为增函数.
(4)当x≥0时,函数f(x)=(x-1)2-2的最小值为-2,最大值为f(3)=2;
当x<0时,函数f(x)=(x+1)2-2的最小值为-2,最大值为f(-3)=2.故函数f(x)的值域为[-2,2].
解析分析:(1)由-3≤x≤3得到函数的定义域关于原点对称,求出f(-x)化简得到与f(x)相等得证;(2)讨论x的取值分别得到f(x)的解析式,画出函数图象即可;(3)在函数图象上得到函数的单调区间,分别指出增减函数区间即可;(4)分区间[-3,0)和(0,3]上分别利用二次函数求最值的方法得到函数的最值即可得到函数的值域.

点评:考查学生会利用数形结合的数学思想解决实际问题,会证明函数的奇偶性,会根据图象得出函数的单调区间,会求函数的值域.
以上问题属网友观点,不代表本站立场,仅供参考!