定义在R上的偶函数f(x),满足f(2+x)=f(2-x),在区间[-2,0]上单调递减,设,则a,b,c的大小顺序为A.c<b<aB.b<c<aC.a<b<cD.b<a<c
网友回答
A
解析分析:由已知中定义在R上的偶函数f(x),满足f(2+x)=f(2-x),我们可判断出函数是以4为周期的周期函数,进而根据函数f(x)在区间[-2,0]上单调递减,可得函数f(x)在区间[0,2]上单调递增,将三个函数的自变量转化到一个单调区间后,即可判断出其大小关系.
解答:∵函数f(x)满足f(2+x)=f(2-x),故函数的图象关于直线x=2对称,∵函数f(x)为定义在R上的偶函数f(x),∴f(x+4)=f(x)即函数是以4为周期的周期函数∵函数f(x)在区间[-2,0]上单调递减,∴函数f(x)在区间[0,2]上单调递增∵1<<1.5∴c<b<a故选A
点评:本题考查的知识点是函数奇偶性的性质,函数单调性的性质,函数的周期性,其中根据已知条件判断出函数的周期性和单调性,是解答本题的关键.