已知边长为a的菱形ABCD,∠A=,将菱形ABCD沿对角线折成二面角θ,已知θ∈[,],则两对角线距离的最大值是A.B.C.D.

发布时间:2020-07-31 12:11:12

已知边长为a的菱形ABCD,∠A=,将菱形ABCD沿对角线折成二面角θ,已知θ∈[,],则两对角线距离的最大值是A.B.C.D.

网友回答

D
解析分析:本题考查的知识点是空间点、线、面之间的距离计算,由处理空间问题的一般思路,我们要将空间问题转化为平面问题,由于本题中是将菱形ABCD沿对角线折成二面角,根据菱形对角线互相垂直的性质,我们易将二面角问题转化为平面角,进而求解.

解答:设菱形ABCD的对角线AC,BD相交于O点,则由已知菱形ABCD边长的为a,∠A=,我们可得OA=OC=又∵菱形的对角线互相垂直,故∠AOC即为菱形ABCD沿对角线折成二面角∴∠AOC=θ则两对角线距离d=cos?又∵θ∈[,]∴当θ=时d有最大值故选D

点评:遇到二面角的问题,一般先作出二面角的平面角.我们可以利用二面角的平面角的定义作出∠AOC为二面角A-BD-C的平面角,通过解∠AOC所在的三角形求得两条异面直线之间的距离.
以上问题属网友观点,不代表本站立场,仅供参考!