如图∠BOP=∠AOP=15°,PC∥OB,PD⊥PB于D,PC=2,则PD的长度为________.
网友回答
1
解析分析:作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.
解答:解:作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∠AOB=30°;∵PC∥OB(已知),∴∠ACP=∠AOB=30°(两直线平行,同位角相等),∴在Rt△PCE中,PE=PC=×2=1(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=1,故