等比数列{an}中,an>0,a6a7=9,则log3a1+log3a2+…+log3a12=
A.3+log32
B.12
C.10
D.8
网友回答
B解析分析:由等比数列的定义和性质可得?a1?a12=a2?a11=a3?a10=a4?a9=a5?a8=a6a7 =9,再由对数的运算性质可得要求的式子等于 6 log3(a6a7 ),运算得到结果.解答:由等比数列的定义和性质可得,a1?a12=a2?a11=a3?a10=a4?a9=a5?a8=a6a7 =9,故有 log3a1+log3a2+…+log3a12 =6 log3(a6a7 )=6log39=6×2=12,故选B.点评:本题主要考查等比数列的定义和性质,对数的运算性质的应用,属于中档题.