如图,边长为的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为A.B.3-C.D.3-
网友回答
B
解析分析:连接AE,根据∠BAB′=30°可知∠DAB′=60°,由正方形的性质可知,AB=AD,由图形旋转的性质可知AD=AB′,故可得出Rt△ADE≌Rt△AB′E,由直角三角形的性质可得出DE的长,再由S阴影=S正方形ABCD-S四边形ADEB′即可得出结论.
解答:解:连接AE,∵∠BAB′=30°,∴∠DAB′=60°,∵四边形ABCD是正方形,∴AB=AD,∠D=∠B=90°,∵正方形AB′C′D′是正方形ABCD旋转而成,∴AD=AB′,∠B′=90°,在Rt△ADE与Rt△AB′E中,AD=AB′,AE=AE,∴Rt△ADE≌Rt△AB′E,∴∠DAE==30°,∴DE=AD?tan∠DAE=×=1,∴S四边形ADEB′=2S△ADE=2××AD×DE=,∴S阴影=S正方形ABCD-S四边形ADEB=3-.故选B.
点评:本题考查的是图形旋转的性质,涉及到正方形的性质、锐角三角函数的定义及特殊角的三角函数值,涉及面较广,难度适中.