奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为A.-9B.9C.0D.1

发布时间:2020-07-31 16:53:45

奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为A.-9B.9C.0D.1

网友回答

A

解析分析:将已知等式移项,利用奇函数的定义得到函数的周期;通过给已知等式的x赋值0求出f(2)的值;利用奇函数的定义得到f(0)得到值;利用周期性求出f(2010)+f(2011)+f(2012)的值.

解答:∵f(2+x)+f(2-x)=0∴f(2+x)=-f(2-x)∵f(x)为奇函数∴f(2+x)=f(x-2);f(0)=0∴f(x)是以T=4为周期的函数∵2010=4×502+2;2011=4×503-1;2012=4×503∵(2+x)+f(2-x)=0令x=0得f(2)=0∴f(2010)+f(2011)+f(2012)=f(2)+f(-1)+f(0)=-9
以上问题属网友观点,不代表本站立场,仅供参考!