给出下列命题:①函数y=x0与y=1表示同一个函数;②函数y=x3x∈(-1,1]是奇函数;③若偶函数y=f(x)且在(-∞,0)上是增函数,则函数y=f(x)在(0,+∞)上是减函数;其中正确命题的个数有
A.0个
B.1个
C.2个
D.3个
网友回答
B解析分析:对于①考查两个函数的定义域即可;选项②③中主要涉及奇偶性和对称性,奇偶性用定义判断,看f(-x)和f(x)的关系,注意奇偶函数的定义域的对称性,若定义域不关于原点对称,一定是非奇非偶函数.解答:对于①,y=1定义域为R,y=x0的定义域为x≠0,故不是同一个函数,故A错;对于②定义域(-1,1]不关于原点对称,一定是非奇非偶函数,故假命题;对于③若偶函数y=f(x),图象关于y轴对称,且在(-∞,0)上是增函数,则函数y=f(x)在(0,+∞)上是减函数,结论正确;其中正确命题的个数有1故选B.点评:本题以命题真假为载体,考查函数的奇偶性和对称性,属基本题.