一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为A.60B.30C.24D.12
网友回答
C
解析分析:连接AC,利用勾股定理解出直角三角形ABC的斜边,通过三角形ACD的三边关系可确定它为直角三角形,木板面积为这两三角形面积之差.
解答:解:连接AC,∵在△ABC中,AB=4,BC=3,∠B=90°,∴AC=5,∵在△ACD中,AC=5,DC=12,AD=13,∴DC2+AC2=122+52=169,AD2=132=169,∴DC2+AC2=AD2,△ACD为直角三角形,AD为斜边,∴木板的面积为:S△ACD-S△ABC=×5×12-×3×4=24.故选C.
点评:本题考查正确运用勾股定理.善于观察题目的信息画图是解题的关键.