在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是边AC上的中线,AD与BE相交于点G,那么AG的长为?A.1B.2C.3D.无法确定

发布时间:2020-07-30 04:28:20

在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是边AC上的中线,AD与BE相交于点G,那么AG的长为?A.1B.2C.3D.无法确定

网友回答

B

解析分析:先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长.

解答:解:∵在△ABC中,AB=AC,AD⊥BC,∴AD==3,∵中线BE与高AD相交于点G,∴点G为△ABC的重心,∴AG=3×=2.故选B.

点评:本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!