当n=1,2,3,…,2003时,求所有二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长度之和.

发布时间:2020-07-30 08:14:58

当n=1,2,3,…,2003时,求所有二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长度之和.

网友回答

解:因为△=(2n+1)2-4(n2+n)=4n2+1+4n-4n2-4n=1>0,
所以无论n为何值,二次函数与x轴均有两个交点.
二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长为|x1-x2|=,
当n=1,n=2,n=3,…,2003时,
二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长分别为:,,,,,,…,,
于是所有线段长为:++++++…+
=1-+-+-+-+…+-
=1-
=.
以上问题属网友观点,不代表本站立场,仅供参考!