如图,△ABC中,∠C=90°,D、E为AB上的两点,若AE=AC,∠DCE=45°,则图中与BC等长的线段是A.CDB.BDC.CED.AE-BE

发布时间:2020-07-30 07:23:35

如图,△ABC中,∠C=90°,D、E为AB上的两点,若AE=AC,∠DCE=45°,则图中与BC等长的线段是A.CDB.BDC.CED.AE-BE

网友回答

B
解析分析:根据三角形的外角性质可得到∠BDC=∠A+∠DCA,∠AEC=∠B+∠ECB,再根据三角形各角的关系不难求得∠BDC=∠BCD,从而得到BC=BD.

解答:解:设∠BCE=x°,∠ACD=y°,∵∠C=90°,∠DCE=45°,∴x+y=45,∵AE=AC,∴∠AEC=∠ACE=45°+y°,∴∠A=180°-∠AEC-∠ACE=180°-2(45°+y°)=90°-2y°,∵x+y=45,即y=45-x∴∠BDC=∠A+∠ACD=90°-2y°+y°=45°+x°又∵∠BCD=∠DCE+∠BCE=45°+x°,∴∠BDC=∠BCD∴BC=BD.故选B.

点评:此题主要考查三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.
以上问题属网友观点,不代表本站立场,仅供参考!