解答题设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数.(1)

发布时间:2020-07-09 07:58:39

解答题设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数.
(1)证明:数列{an}是等比数列;
(2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.

网友回答

证明:(1)证:因为Sn=4an-p(n∈N*),则Sn-1=4an-1-p(n∈N*,n≥2),
所以当n≥2时,an=Sn-Sn-1=4an-4an-1,整理得.(5分)
由Sn=4an-p,令n=1,得a1=4a1-a,解得.
所以an是首项为,公比为的等比数列.(7分)
(2)解:因为a1=1,则,
由bn+1=an+bn(n=1,2,),得,(9分)
当n≥2时,由累加得bn=b1+(b2-b′1)+(b3-b2)+…+(bn-bn-1)=,
当n=1时,上式也成立.(14分)解析分析:(1)通过Sn=4an-p,利用an=Sn-Sn-1,求出,利用等比数列的定义证明数列{an}是等比数列;(2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,推出,利用bn=b1+(b2-b′1)+(b3-b2)++(bn-bn-1),求数列{bn}的通项公式.点评:本题是中档题,考查数列的通项公式的应用,等比数列的证明,注意利用an=Sn-Sn-1时,必须验证n=1的情形,否则容易出错误.
以上问题属网友观点,不代表本站立场,仅供参考!