解答题如图,在直三棱柱ABC-A1B1C1中,,AB=AC=2,AA1=6,点E、F分

发布时间:2020-07-09 07:11:12

解答题如图,在直三棱柱ABC-A1B1C1中,,AB=AC=2,AA1=6,点E、F分别在棱AA1、CC1上,且AE=C1F=2.
(1)求三棱锥A1-B1C1F的体积;
(2)求异面直线BE与A1F所成的角的大小.

网友回答

解:(1)在直三棱柱ABC-A1B1C1中,FC1⊥平面A1B1C1,故FC1=2是三棱锥A1-B1C1F的高.
而直角三角形的===2.
∴三棱锥A1-B1C1F的体积===.
(2)连接EC,∵A1E∥FC,A1E=FC=4,
∴四边形A1ECF是平行四边形,
∴A1C∥EC,
∴∠BEC是异面直线A1F与BE所成的角或其补角.
∵AE⊥AB,AE⊥AC,AC⊥AB,AE=AB=AC=2,∴EC=EB=BC=2.
∴△BCE是等边三角形.
∴∠BEC=60°,即为异面直线BE与A1F所成的角.解析分析:(1)利用直三棱柱ABC-A1B1C1中的性质,及三棱锥A1-B1C1F的体积==即可得出.(2)连接EC,∵A1E∥FC,A1E=FC=4,可得四边形A1ECF是平行四边形,利用其性质可得A1C∥EC,可得∠BEC是异面直线A1F与BE所成的角或其补角,在△BCE中求出即可.点评:熟练利用直三棱柱的性质、三棱锥的体积及等体积变形、平行四边形的判定及性质、异面直线所成的角是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!