直角△ABC纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则△CBE的面积是A.B.C.D.

发布时间:2020-07-30 04:09:49

直角△ABC纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则△CBE的面积是A.B.C.D.

网友回答

A

解析分析:先设CE=x,再根据图形翻折变换的性质得出AE=BE=8-x,再根据勾股定理求出x的值,进而可得出△CBE的面积.

解答:设CE=x,则AE=8-x,∵△BDE是△ADE翻折而成,∴AE=BE=8-x,在Rt△BCE中,BE2=BC2+CE2,即(8-x)2=62+x2,解得:x=,∴S△CBE=CE×BC=.故选A.

点评:本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!