现有A,B两个项目,投资A项目100万元,一年后获得的利润为随机变量X1(万元),根据市场分析,X1的分布列为:X11211.811.7P投资B项目100万元,一年后

发布时间:2020-07-31 21:53:28

现有A,B两个项目,投资A项目100万元,一年后获得的利润为随机变量X1(万元),根据市场分析,X1的分布列为:
X11211.811.7P投资B项目100万元,一年后获得的利润X2(万元)与B项目产品价格的调整(价格上调或下调)有关,已知B项目产品价格在一年内进行2次独立的调整,且在每次调整中价格下调的概率都是p(0≤p<1).
经专家测算评估B项目产品价格的下调与一年后获得相应利润的关系如下表:
B项目产品价格一年内下调次数X(次)012投资100万元一年后获得的利润X2(万元)1312.52(Ⅰ)求X1的方差D(X1);
(Ⅱ)求X2的分布列;
(Ⅲ)若p=0.3,根据投资获得利润的差异,你愿意选择投资哪个项目?
(参考数据:1.22×0.49+0.72×0.42+9.82×0.09=9.555).

网友回答

解:(Ⅰ)X1的概率分布列为
??????X11211.811.7P则..---------(4分)
(Ⅱ)设Ai表示事件”第i次调整,价格下调”(i=1,2),则P(X=0)=;P(X=1)=;P(X=2)=
故X2的概率分布列为
X21312.52P(1-p)22p(1-p)p2---------(8分)
(Ⅲ)当p=0.3时.E(X2)=E(X1)=11.8,
由于D(X1)=0.01.D(X2)=9.555.
所以D(X2)>D(X1),当投资两个项目的利润均值相同的情况下,投资B项目的风险高于A项目.
从获得稳定收益考虑,当p=0.3时应投资A项目.---------(12分)
解析分析:(Ⅰ)根据X1的概率分布列,利用期望、方差公式,即可得到结论;(Ⅱ)确定X的取值,求出相应的概率,可得X2的概率分布列;(Ⅲ)当p=0.3时,期望相同,利用方差的大小比较,即可得到结论.

点评:本题考查离散型随机变量的分布列、期望与方差,考查利用概率知识解决实际问题,正确求期望与方差是关键.
以上问题属网友观点,不代表本站立场,仅供参考!