如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是A.cmB.cmC.cmD.cm
网友回答
B
解析分析:易证△AOD是等腰直角三角形.则圆心O到弦AD的距离等于AD,所以可先求AD的长.
解答:解:以BC上一点O为圆心的圆经过A、D两点,则OA=OD,△AOD是等腰直角三角形.易证△ABO≌△OCD,则OB=CD=4cm.在直角△ABO中,根据勾股定理得到OA2=20;在等腰直角△OAD中,过圆心O作弦AD的垂线OP.则OP=OA?sin45°=cm.故选B.
点评:此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.