已知y=f(x)是其定义域上的单调递增函数,它的反函数是y=f-1(x)且y=f(x+1)的图象过A(-4,0)、B(2,3)两点,若|f-1(x+1)|≤3,则x的

发布时间:2020-07-31 17:49:31

已知y=f(x)是其定义域上的单调递增函数,它的反函数是y=f-1(x)且y=f(x+1)的图象过A(-4,0)、B(2,3)两点,若|f-1(x+1)|≤3,则x的取值范围是________.

网友回答

[-1,2]

解析分析:通过函数y=f(x+1)的图象过A(-4,0),B(2,3)两点,推出f(-3)=0.f(3)=3.利用y=f-1(x)的值域即为y=f(x)的定义域及|f-1(x+1)|≤3,推出x的取值范围为:0≤x+1≤3,求出x的范围.

解答:因为y=f(x+1)过A(-4,0),B(2,3)两点,所以:f(-3)=0,f(3)=3.而y=f(x)与y=f-1(x)互为反函数.则可知:y=f-1(x)的值域即为y=f(x)的定义域.故若|f-1(x+1)|≤3,则可知:y=f-1(x+1)的值域为:[-3,3].则y=f(x)的定义域即为:[-3,3].而y=f(x+1)在x=-4时,有:f(-3)=0;x=2时,有f(3)=3.即y=f(x+1)的值域为:[0,3].则当|f-1(x+1)|≤3时,x的取值范围为:0≤x+1≤3,即:-1≤x≤2.故
以上问题属网友观点,不代表本站立场,仅供参考!