如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化过程中,

发布时间:2020-07-30 01:50:29

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化过程中,有下列五个结论:
①△DFE是等腰直角三角形;??②四边形CDFE不可能为正方形;
③DE长度的最小值为4;?????④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.其中正确结论是________.

网友回答

①④⑤
解析分析:解答此题的关键是在于判断△DFE是否等腰直角三角形;做常规辅助线,连接CF,由SAS定理可得△CFE≌△ADF,从而可证∠DFE=90°可得DF=EF,可得①△DFE是等腰直角三角形正确;②,再由补割法可证④是正确的.判断③与⑤,①△DFE是等腰直角三角形;可得DE=DF,当DF⊥BC时,DF最小,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的,个,故①④⑤正确.

解答:解;连接CF.∵△ABC为等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB,∵AD=CE,∴△ADF≌△CEF,∴EF=DF,∠CFE=∠AFD,∵∠AFD+∠CFD=90°∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形,∴①正确;当D、E分别为AC,BC的中点时,四边形CDEF是正方形,因此②错误;∵△ADF≌△CEF,∴S△CEF=S△ADF,∴④是正确的;∵△DEF是等腰直角三角形,∴当DE最小时,DF也最小,即当DF⊥AC时,DE最小,此时DF=BC=4,∴DE=DF=4,∴③错误;当△CDE面积最大时,由④知,此时△DEF的面积最小,此时,S△CDE=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8,∴⑤正确.综上所述正确的有①④⑤.故
以上问题属网友观点,不代表本站立场,仅供参考!