解答题已知数列{an}的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列.
(Ⅰ)求a2,a3;
(Ⅱ)证明数列{an-2}为等比数列;
(Ⅲ)判断是否存在λ(λ∈Z),使不等式Sn-n+1≥λan对任意的n∈N*成立,若存在,求出λ的最大值;若不存在,请说明理由.
网友回答
(Ⅰ)解:∵数列{an+Sn}是公差为2的等差数列,∴(an+1+Sn+1)-(an+Sn)=2,
即,(2分)∵a1=1,∴;(4分)
(Ⅱ)证明:由题意,得a1-2=-1,∵,∴{an-2}是首项为-1,公比为的等比数列;(8分)
(Ⅲ)解:由(Ⅱ)得,∴,∵{an+Sn}是首项为a1+S1=2,公差为2的等差数列,∴an+Sn=2+(n-1)×2=2n,∴,(9分)
设存在整数λ,使不等式Sn-n+1≥λan对任意的n∈N*成立,
即存在整数λ,使不等式对任意的n∈N*成立,∴当n=1时,不等式成立,解得λ≤1,(10分)
以下证明存在最大的整数λ=1,使不等式Sn-n+1≥λan对任意的n∈N*成立.
当n=2时,不等式化简为,成立;
当n≥3时,∵,∴(Sn-n+1)>an成立.
综上,知存在整数λ,使不等式Sn-n+1≥λan对任意的n∈N*成立,且λ的最大值为1.(14分)解析分析:(Ⅰ)由题意知(an+1+Sn+1)-(an+Sn)=2,即,由此可知.(Ⅱ)由题意得a1-2=-1,再由,知{an-2}是首项为-1,公比为的等比数列.(Ⅲ)由题意知,所以,设存在整数λ,使不等式对任意的n∈N*成立,∴当n=1时,不等式成立,解得λ≤1.由此可知存在整数λ,使不等式Sn-n+1≥λan对任意的n∈N*成立,且λ的最大值为1.点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.