已知定义在R上的奇函数f(x),定义域上是减函数,且f(x2-a)+f(x-2a)>0.(1)当x=1时,求实数a的取值范围;(2)当x∈[-1,2]时,不等式f(x

发布时间:2020-08-01 02:02:13

已知定义在R上的奇函数f(x),定义域上是减函数,且f(x2-a)+f(x-2a)>0.
(1)当x=1时,求实数a的取值范围;
(2)当x∈[-1,2]时,不等式f(x2-a)+f(x-2a)>0恒成立,求实数a的取值范围.

网友回答

解:(1)∵定义在R上的奇函数f(x),且f(x2-a)+f(x-2a)>0
∴f(x2-a)>f(2a-x)
∵函数f(x)是定义域上的减函数,
∴x2-a<2a-x
∵x=1,
∴1-a<2a-1,即a>;
(2)由(1)知,3a>x2+x
∵x2+x=(x+)2-,x∈[-1,2]
∴x=2时,(x2+x)max=6
∵当x∈[-1,2]时,不等式f(x2-a)+f(x-2a)>0恒成立,
∴a>2.

解析分析:(1)利用定义在R上的奇函数f(x),定义域上是减函数,将不等式化为具体不等式,即可求实数a的取值范围;(2)分离参数求最值,即可求实数a的取值范围.

点评:本题考查函数奇偶性与单调性的结合,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!