已知E、F分别是平行四边形ABCD的边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G.
(1)试说明△ADE≌△CBF;
(2)当四边形AGBD是矩形时,请你确定四边形BEDF的形状并说明;
(3)当四边形AGBD是矩形时,四边形AGCD是等腰梯形吗?直接说出结论.
网友回答
(1)证明:在平行四边形ABCD中,BC=AD,∠C=∠BAD,CD=AB,
∵E、F是AB、CD的中点,
∴AE=CF,
在△BCF和△DAE中,
,
∴△ADE≌△CBF.
(2)四边形BEDF的形状是菱形,
理由是:∵BE=DF,BE∥DF,
∴四边形BEDF为平行四边形,
当四边形AGBD为矩形时,∠ADB=90°,
∴DE=AB=BE,
∴BEDF为菱形.
(3)答:四边形AGCD不可能是等腰梯形.
解析分析:(1)根据平行四边形的性质推出BC=AD,∠C=∠BAD,CD=AB,求出AE=CF,根据三角形的判定求出即可;(2)根据平行四边形的判定推出平行四边形BEDF,再根据直角三角形斜边上中线性质求出DE=BE即可;(3)根据在Rt△DBC中,CD不可能等于BD,推出即可.
点评:本题综合考查了平行四边形的性质和判定,菱形的判定,矩形的性质,等腰梯形的判定,直角三角形斜边上的中线的性质,全等三角形的判定等知识点的应用,此题综合性比较强,但难度不大,通过做此题培养了学生分析问题和解决问题的能力.