如图,在△ABC中,∠BAC=90°,AB=9,AC=12,AD⊥BC,垂足为D.(1)求BC的长;(2)求BD的长.

发布时间:2020-07-31 01:17:39

如图,在△ABC中,∠BAC=90°,AB=9,AC=12,AD⊥BC,垂足为D.
(1)求BC的长;(2)求BD的长.

网友回答

解:(1)在△ABC中,∵∠BAC=90°,
∴BC2=AB2+AC2(勾股定理),
=92+122,
=81+144,
=225.
∴BC=15.

(2)AD⊥BC,垂足为D,
∴△DBA为直角三角形,
在△ABC与△DBA中,
∠BDA=∠BAC=90°,∠B=∠B(公共角),
∴△ABC∽△DBA,
∴=,
∴BD===.
解析分析:(1)由已知在△ABC中,∠BAC=90°,所以得到△ABC为直角三角形且AB、AC为两直角边,因此根据勾股定理可求出BC的长.(2)AD⊥BC,垂足为D,所以得到直角三角形DBA,∠BDA和∠BAC都为直角,∠B为公共角,得到△ABC与△DBA相似,根据相似三角形的性质求得BDA.

点评:此题考查的知识点是直角三角形的勾股定理.解答此题的关键是由已知在△ABC中,∠BAC=90°,所以运用勾股定理求出BC的长,通过三角形相似求出BD.
以上问题属网友观点,不代表本站立场,仅供参考!