A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡

发布时间:2020-08-01 05:41:38

A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.
(1)求ξ的取值范围;
(2)求ξ的数学期望Eξ.

网友回答

解:(1)设正面出现的次数为m,反面出现的次数为n,
则,
可得:当m=1,n=0或m=0,n=5时,ξ=5;
当m=6,n=1或m=1,n=6时,ξ=7;
当m=7,n=2或m=2,n=7时,ξ=9;
∴ξ的所有可能取值为:5,7,9.
(2)ξ表示游戏终止时掷硬币的次数,由题意知ξ的所有可能取值为:5,7,9.
根据独立重复试验的概率公式得到
P(ξ=5)=2×==;
P(ξ=7)=2=;
P(ξ=9)=1--=;
∴Eξ=5×+7×+9×=.

解析分析:(1)设出硬币正面出现的次数和出现反面的次数,根据题意列出不等式组,讨论m,n取值不同时,得到的对应的ξ的值,结果ξ的可能取值是5,7,9(2)ξ表示游戏终止时掷硬币的次数,由第一问知ξ的所有可能取值为:5,7,9.根据独立重复试验的概率公式得到变量对应的概率,做出ξ的数学期望.

点评:本题考查离散型随机变量的期望,考查独立重复试验的概率公式,考查分类讨论思想,考查利用概率知识解决实际问题的能力,这种题目是近几年高考题目中经常出现的题型.
以上问题属网友观点,不代表本站立场,仅供参考!