解答题已知函数f(x)=.
(Ⅰ)求函数f(x)的周期及f(x)的最大值和最小值;
(Ⅱ)求f(x)在[0,π]上的单调递增区间.
网友回答
解:(Ⅰ)函数f(x)==+5+1=5sin(2x+)+.
函数f(x)的周期T==π,
函数f(x)的最大值为和最小值-;
(Ⅱ)由(Ⅰ),f(x)=5sin(2x+)+.
再由2kπ-≤2x≤2kπ+(k∈Z),
解得kπ-≤x≤kπ+(k∈Z).当k=0时,-≤x≤,所以0≤x≤;
k=1时≤x≤,∴≤x≤π,
所以y=f(x)的单调增区间为[0,],[].解析分析:(Ⅰ)先运用三角函数的两角和与差的正弦公式及二倍角公式将函数化简为y=Asin(ωx+ρ)+b的形式,根据周期公式可求出最小正周期;通过正弦函数的值域直接求出f(x)的最值.(Ⅱ)将2x+看做一个整体,根据正弦函数的性质可得2kπ-≤2x≤2kπ+(k∈Z),进而求出x的范围,得到