已知椭圆E的离心率为e,两焦点为F1,F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个公共点,若=e,则e的值为A.B.C.D.

发布时间:2020-07-31 14:51:23

已知椭圆E的离心率为e,两焦点为F1,F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个公共点,若=e,则e的值为A.B.C.D.

网友回答

A
解析分析:抛物线的准线l交x轴于M,P在l上的射影为Q,进而可推断出|F1M|=|F1F2|,则l的方程可知推知|PF2|=|PQ|,,利用=e推断出=e进而根据椭圆的第二定义可知l为椭圆的左准线,进而推断出-3c=-求得椭圆的离心率.

解答:记抛物线的准线l交x轴于M,P在l上的射影为Q,则|F1M|=|F1F2|=2c,即l的方程为x=-3c,|PF2|=|PQ|,又=e,即=e,∵F1是椭圆的左焦点,∴|PQ|为P到椭圆左准线的距离,即l为椭圆的左准线,于是有:-3c=-?e=,故选A

点评:本题主要考查了抛物线的简单性质,椭圆的简单性质.抛物线的定义等.考查了学生对圆锥曲线基础知识掌握的熟练程度.
以上问题属网友观点,不代表本站立场,仅供参考!