在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.
(1)请判断四边形EFGH的形状,并给予证明;
(2)试添加一个条件,使四边形EFGH是菱形.(写出你添加的条件,不要求证明)
网友回答
解:(1)四边形EFGH的形状是平行四边形.
证明:连接AC、BD,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EF∥AC,EF=AC,HG∥AC,HG=AC,GF=BD,
∴EF=HG,EF∥HG,
∴四边形EFGH是平行四边形.
(2)添加的条件是AC=BD.
解析分析:(1)连接AC、BD,根据三角形的中位线定理得到EF∥AC,EF=AC,HG∥AC,HG=AC,推出EF=HG,EF∥HG即可;(2)根据三角形的中位线定理得到EF=AC,GF=BD,AC=BD,推出EF=GF,由(1)即可推出