抛物线y=x2+2bx与x轴的两个不同交点是O和A,顶点B在直线y=kx上,若△OAB是等边三角形,则b=A.±B.±3C.±D.±

发布时间:2020-07-30 00:47:53

抛物线y=x2+2bx与x轴的两个不同交点是O和A,顶点B在直线y=kx上,若△OAB是等边三角形,则b=A.±B.±3C.±D.±

网友回答

A

解析分析:先根据题意求出O和A的横坐标,然后利用顶点式,依据二次函数的性质即可解答.

解答:已知抛物线y=x2+2bx与x轴的两个不同交点是O和A,令y=0求出x=0或-3b又由配方法得,原抛物线方程化为y=-由等边三角形性质得,±3b×=,解得b=.故选A.

点评:本题涉及二次函数的综合题型,难度中等.
以上问题属网友观点,不代表本站立场,仅供参考!