如图,已知在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC上由B点向C点运动,同时,点Q在线段CA上由点C向点A运动.(1)如果点P

发布时间:2020-07-29 15:41:33

如图,已知在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC上由B点向C点运动,同时,点Q在线段CA上由点C向点A运动.(1)如果点P、Q的速度均为3厘米/秒,经过1秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P的运动速度为2厘米/秒,点Q的运动速度为2.5厘米/秒,是否存在某一个时刻,使得△BPD与△CQP全等?如果存在请求出这一时刻并证明;如果不存在,请说明理由.

网友回答

(1)解:△BPD与△CQP是全等,理由是:当t=1秒时BP=CQ=3,CP=8-3=5,∵D为AB中点,∴BD=AC=5=CP,∵AB=AC,∴∠B=∠C,在△BDP和△CPQ中∵,∴△BDP≌△CPQ(SAS).(2)解:假设存在时间t秒,使△BDP和△CPQ全等,则BP=2t,BD=5,CP=8-2t,CQ=2.5t,∵△BDP和△CPQ全等,∠B=∠C,∴或(此方程组无解),解得:t=2,∴存在时刻t=2秒时,△BDP和△CPQ全等,此时BP=4,BD=5,CP=8-4=4=BP,CQ=5=BD,在△BDP和△CQP中∵,∴△BDP≌△CQP(SAS).
解析分析:(1)求出BP=CQ,CP=BD,∠B=∠C,根据SAS证出两三角形全等即可;(2)假设存在时刻t,根据全等三角形的性质得出方程组,求出t后,看看是否符合题意,再根据全等三角形的判定推出即可.

点评:本题考查了全等三角形的性质和判定,主要考查学生的推理能力,题目比较好,但是有一定的难度.
以上问题属网友观点,不代表本站立场,仅供参考!