第一行是等差数列0,1,2,3,…,2008,将其相邻两项的和依次写下作为第二行,第二行相邻两项的和依次写下作为第三行,依此类推,共写出2008行.0,1,2,3,…

发布时间:2020-07-31 14:14:57

第一行是等差数列0,1,2,3,…,2008,将其相邻两项的和依次写下作为第二行,第二行相邻两项的和依次写下作为第三行,依此类推,共写出2008行.
0,1,2,3,…,2005,2006,2007,2008
1,3,5,…,4011,4013,4015
4,8,…,8024,8028

(1)由等差数列性质知,以上数表的每一行都是等差数列.记各行的公差组成数列{di}(i=1,2,3…,2008).求通项公式di;
(2)各行的第一个数组成数列{bi}(1,2,3,…,2008),求数列{bi}所有各项的和.

网友回答

解.?(1)记ai?j表示第i行第j列的项,
∵di+1=a(i+1)?(k+1)-a(i+1)?k =ai?(k+1)+ai?(k+2)-ai?k-ai?(k+1)=ai?(k+2)-ai?k=2di,
∴=2,则{di}是等比数列,di=d1?2i-1=2i-1.
(2)bi+1=ai1+ai2=ai1+ai1+di=2ai1+2i-1=2bi+2i-1,∴=+.
∴数列{ }是等差数列,=(i-1),所以 bi=(i-1)2i=(i-1)2i-2,
设数列{bi}所有各项的和S,则 S=0+1+2×2+3×22+…+2007×22006? ①,
∴2 S=0+1×2+2×22+3×23+…+2007×22007?②,
用①-②可得-S=-1003×22008-1.
从而得到S=1003×22008 +1.
解析分析:(1)记ai?j表示第i行第j列的项,求出 di+1=2di,可得{di}是等比数列,di=d1?2i-1=2i-1.(2)化简bi+1=ai1+ai2=2bi+2i-1,可得 =+,得数列{ }是等差数列,bi=(i-1)2i=(i-1)2i-2,数列{bi}所有各项的和S=0+1+2×2+3×22+…+2007×22006,用错位相减法,得到S的值.

点评:本题是中档题,考查数列的有关知识,证明数列是等差数列,数列的递推关系式的应用,数列与函数的综合应用,考查计算能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!