为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获得,国家将给予补偿.
(I)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?
(II)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
网友回答
解:(I)当x∈[200,300]时,设该项目获利为S,则
S=200x-=-x2+400x-80000=-(x-400)2;
当x∈[200,300]时,S<0,此时该项目不会获利;
当x=300时,S取得最大值-5000,所以,国家每月至少补贴5000元才能使该项目不亏损.
(II)由题意知,二氧化碳的每吨平均处理成本为:
=,
则:①当x∈[120,144)时,=x2-80x+5040=(x-120)2+240,∴当x=120时,取得最小值240;
②当x∈[144,500]时,=x+-200≥2-200=200,
当且仅当x=,即x=400时,取得最小值200;
∵200<240,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.
解析分析:(I)当x∈[200,300]时,该项目获利S=200x-<0,说明不获利;当x=300时,S取得最大值-5000,说明国家每月至少补贴5000元才能使该项目不亏损;(II)二氧化碳的每吨平均处理成本为:=;分段讨论,①当x∈[120,144)时,求出的最小值;②当x∈[144,500]时,求出的最小值;比较得每月处理量为多少吨时,能使每吨的平均处理成本最低.
点评:本题考查了分段函数模型的应用题目,并且考查了求二次函数的最值,利用基本不等式求函数的最值等问题,是中档题.